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Abstract

The acquisition of volatile memory from a compromised computer is difficult to perform reli-
ably because the acquisition procedure should not rely on untrusted code, such as the operating
system or applications executing on top of it. In this paper, we present a procedure for acquiring
volatile memory using a hardware expansion card that can copy memory to an external storage
device. The card is installed into a PCI bus slot before an incident occurs and is disabled until a
physical switch on the back of the system is pressed. The card cannot easily be detected by an
attacker and the acquisition procedure does not rely on untrusted resources. We present general
requirements for memory acquisition tools, our acquisition procedure, and the initial results of
our hardware implementation of the procedure.

Keywords: Computer Forensics, Digital Evidence, Digital Investigations, Incident Response,
Volatile Data Acquisition

1 Introduction

Before digital data can be considered evidence of an incident, it must first be collected. After
all, if the investigator does not have a copy of the data, then he cannot extract information from
it to draw conclusions. Historically, digital investigations have relied on evidence found on the
hard disk, because most of the investigations have involved the storage of contraband data. When
investigating computer intrusions, additional data sources are needed and evidence is collected from
network traffic and volatile memory.

This paper describes a hardware-based procedure for making an accurate and reliable copy of
volatile memory contents so that the data can be examined to find evidence. Two of the more
famous examples where the memory contents are useful in an investigation is with the Code Red
[1] and SQL Slammer [12] worms. Both of these worms resided only in memory and never wrote
anything to disk, so disk analysis may not find any evidence. Other types of investigations could
find the memory contents of a suspicious PC interesting because it contains data from running
processes, such as passwords, unencrypted data, and the state of user activity [3] [18].

The data stored in volatile memory is lost when power is removed, so it is difficult for an
investigator to acquire because he typically wants to acquire data in a trusted environment where
there is no threat of malicious programs. Rootkits and Trojan horse attacks against applications
and operating system kernels [13] can cause the system to produce unreliable data, so it is desirable
to not rely on the resources that the attacker could have modified. Existing methods for acquiring
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volatile memory involve untrusted software and are invasive because they typically write back to
memory and may also write to the system’s hard disk. Many incident responders will run tools such
as ps and netstat to collect only obvious data, leaving most of the system’s memory unanalyzed.

Our solution is a PCI expansion card that is installed into a computer before an intrusion occurs
and will dump the exact contents of volatile physical memory to an external, non-volatile storage
medium. The PCI controller on the card is disabled until the card is activated by the incident
response team and therefore the card will not respond to bus queries from the host system. Only
when the device is actually enabled will it become a visible connection to the PCI bus. Due to
the design of PCI, which is software- and operating system-independent, the attacker may see the
device but may not be able to tamper with its actions.

This paper first provides background material on the investigation model that we are assuming
and we propose general requirements for memory acquisition. Section 3 shows the existing methods
for acquiring the volatile memory contents of a system, Section 4 shows our process for acquiring
memory, Section 5 shows the technical details of our implementation, and Section 6 describes the
limitations of this process. Finally, we present our conclusions in Section 7.

2 Background

2.1 Investigation Phases

There are several models of a digital investigation, so we will first define the one that we are using [2]
and where our proposed procedure fits into it. Figure 1 shows each step of the digital investigation
process.

Figure 1: Phases of a digital investigation

Preservation SurveyNotification

Search Reconstruction Presentation

The first step of any investigation associated with a computer intrusion is the Notification
Phase, where an incident is detected and the response and investigation process commences by
deploying an incident response team. After the incident has been verified by the incident response
team, the investigation moves to a Preservation Phase. The goal of the Preservation Phase is to
ensure that the contents of the digital crime scene are modified as little as possible so that the
investigator can collect accurate evidence. An investigator or first responder will typically make an
exact copy of the digital crime scene so that it can be safely analyzed in a laboratory environment.

After the crime scene has been preserved, the Survey Phase begins and the crime scene is
examined for obvious pieces of digital evidence. This phase uses the existing knowledge of the
incident and the experience and training of the investigator to find obvious evidence. After the
Survey Phase, the investigator will have one or more hypotheses about the incident and the Search
Phase will begin with a more thorough search of the system to find additional evidence that
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may support or refute his hypotheses. After the digital evidence has been collected during the
Survey and Search Phases, the Reconstruction Phase begins, in which the existing evidence and
hypotheses are tested to form a final theory. In some cases, additional evidence is searched for after
the Reconstruction Phase begins. The last phase of the investigation is the Presentation Phase
where the final theory is presented to the parties who requested the investigation.

Our work focuses on the Preservation Phase, because current techniques do not allow the
investigator to preserve the data of all computer components in a reliable way. The investigator
can easily make a reliable copy of a hard disk using commonplace tools, but he cannot make an
reliable copy of volatile memory. Another goal of our work is to create a mechanism that enables a
person with minimal training to preserve a digital crime scene upon detection of an incident until
more skilled responders arrive.

2.2 Memory Imaging Requirements

One of the factors that is used when determining the reliability of digital evidence is the acquisition
procedure. We have created a set of volatile memory acquisition requirements that can be used
when developing a new procedure, when comparing existing procedures, and when developing test
cases for implementations of procedures.

The Computer Forensic Tool Testing (CFTT) [14] group at the National Institute of Standards
and Technology (NIST) developed a specification for disk imaging tools [15]. The specification lists
the requirements that NIST used to test existing disk imaging tools. We modified the disk imaging
requirements so that they could be applied to memory imaging. This new set of requirements were
used when we designed our hardware-based acquisition solution.

The term “bit-stream duplicate” was removed from the requirements because the term assumes
that the source and target data are written in a binary format. While the majority of modern
digital systems use a binary storage format, the requirements for acquiring data should apply to
any format, although each format may require a different procedure.

1. The acquisition tool shall read all digital data from a source and write them to a non-volatile
destination location. The destination, called an image, shall be in an accessible format.

2. The tool shall not cause data to be written to the source.

3. The tool shall follow a documented procedure that includes the steps that it performs and
the hardware and software resources that it uses to read the source data.

4. If there are I/O errors while reading the source data, the tool shall write a specified value
to the corresponding locations in the image. The tool shall log the type and location of the
error in an accessible format.

5. If the destination of the data is larger than the source, the tool shall identify the start and
end locations of the source data within the destination.

6. If the destination of the data is smaller than the source, the tool shall notify the user and
either abort or copy as much data as possible into the destination.

7. The tool shall provide documentation that is correct.

Software-based solutions for memory imaging typically violate the second requirement because
they are loaded into the target system’s memory when they execute. The third requirement was
added to satisfy a Daubert Hearing [17] and to show what untrusted resources, if any, are used in the
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process. If the kernel is used to read the memory contents, then the kernel should be investigated
thoroughly to identify if it has been modified in any way to return false values.

The following recommendations are also defined:

1. The tool should halt the target system during the acquisition process so that memory will
not change and the page table will remain consistent.

2. The tool should calculate one or more hash values of the data that is read from the source.

3 Previous Work

3.1 Physical Memory Devices

Operating Systems typically provide access to physical memory; for example Unix flavors have the
/dev/mem device, which corresponds to the physical memory, and the /dev/kmem device, which
corresponds to the virtual memory of the kernel. Microsoft Windows 2000 and XP have the
\\.\PhysicalMemory object device that provides access to the physical memory. The dd tool,
which comes with most Unix flavors and has been ported for Windows systems [7], can read these
memory devices and write the data to a file or to a server on the network.

This acquisition procedure is relatively easy to perform, but has some shortcomings with respect
to reliability and usefulness. The procedure relies on the local operating system to supply the
memory contents and an advanced attacker could modify the operating system to send false data.
The procedure also requires the responder to run at least one process. More processes will need
to be run if you start a new shell or require network transport. Running a process on the target
system violates our second requirement because it will overwrite unallocated data in memory, or
allocated data in memory may need to be written to the swap space or page file and thus overwrite
unallocated data.

The /dev/mem device has been abused by attackers in the past and is restricted in some systems.
In fact, some systems do not implement the device at all. Therefore, this technique is not always
easily available.

A final shortcoming with this approach, and one that we face with our own procedure, is that
the final result is an image of physical memory. Physical memory contains pages of virtual memory
that are written in an unorganized order, and the operating system uses a page table to correlate
the physical memory and swap space with kernel and process virtual memory locations. Analysis
of the page table is required to properly piece together the ordering of contents within physical
memory.

3.2 Sparc OpenBoot

The OpenBoot firmware in a Sun system that uses a Sparc architecture can dump the contents
of physical memory to a storage device [5]. The firmware can be accessed by using the L1-A (or
STOP-A) keys and the system is suspended and placed into the OpenBoot prompt. Therefore, if
an attacker was running any malicious processes, the first responder could suspend the system by
enabling the OpenBoot firmware.

If the sync command is typed at the OpenBoot prompt, the memory and register contents are
dumped to a pre-configured device, typically the swap space on a hard drive. After the memory
is written, the system reboots and the savecore command can be executed to copy the memory
from the dump device to the file system.
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The sync command was designed to debug the operating system and tries to be efficient with
the amount of memory that it saves. By default, it will only save the pages for kernel memory, but
the dumpadm tool can be used to configure the system to save all memory.

The advantage of this design is that it is hardware-based, due to the fact that the OpenBoot
firmware is executing from ROM, and cannot be modified by the attacker (unless the firmware is
stored on intentionally rewriteable Flash memory as is common in UltraSparc machines). It also
provides a mechanism to suspend a system so that no further activity can occur while a response
team travels to a data center. Additional data and symbols from the kernel are also saved with the
sync command and kernel debugging programs exist to analyze the data.

A disadvantage of this technique is that, by default, it overwrites data in swap space and it
requires the system to be rebooted so that savecore can copy the memory contents from swap.
Another disadvantage of this procedure is that it is available only on Sparc systems. Similar
features may exist on other platforms that have firmware-based debugging functionality which can
be accessed while the system is running.

Note that other Unix systems also have the savecore command, but it can only be run after
the kernel panics. In general, there is no graceful way to force a suspect system to panic, so this is
not a good procedure to acquire reliable data. Solaris also offers the ‘-L’ flag with savecore, which
will save the memory of the live system, but this is not much different than using the /dev/mem

device.

3.3 Process Pseudo-File System

Many Unix systems have a process pseudo-file system that is mounted at /proc/ which contains
information about the kernel and running processes. Each operating system has a different imple-
mentation and different directory structure, but many of them have the same basic features. There
is typically a file that corresponds to all of physical memory (similar to /dev/mem) and a file that
corresponds to each of the processes’ memory.

We have already discussed the advantages and disadvantages of obtaining the physical memory
image with /dev/mem, so we will focus on obtaining the memory of a single process. An advantage
of this approach is that you will not need to piece the pages of physical memory and swap space
together during analysis using the page table. A disadvantage of this approach is that you will
need to first identify the suspect processes before this can be used. Another disadvantage of this
approach is that it will force non-resident pages of memory to be read from swap and written to
physical memory. This may cause resident memory pages to be written to the swap space, which
will overwrite unallocated data.

This technique collects only the allocated memory, which is analogous to analyzing a file backup
of a compromised server’s hard disk as opposed to a full image of it. Passwords and other data
from previously run processes may exist in unallocated memory. By running a command to copy
the memory, you will overwrite unallocated data in memory because the process will need memory
to operate, which violates our second requirement.

The pcat tool in The Coroner’s Toolkit (TCT) [6] uses the ptrace() system call or the /proc/
file system, if it exists, to save process memory. pcat can either save all of the memory as a sparse
file or it can save only the non-zero memory contents.

3.4 Virtual Machines

A virtual machine, such as VMWare [19], is an application that emulates a computer environment
so that an operating system and other applications can execute inside of it. The operating system
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and applications do not always know that they are inside an emulated environment and will execute
as normal. The virtual machine can be suspended and saved at any time.

If a system running in a virtual machine is compromised, the memory and disk contents can
be saved by suspending the virtual machine and making copies of the files that correspond to the
memory and disk areas of the virtual system. Some existing virtual machines save the disk and
memory contents in a raw file and others save them in a proprietary format.

The major disadvantage of this approach is the impact on system performance. Critical servers
running inside of an emulated environment will increase the load on the hardware. The advantage
is that no special processes are run and that trusted software (the virtual machine) is used to save
the system state.

3.5 Hibernation

Most portable, and some non-portable, systems have power management features that save the
state of the computer while the processor and devices (hard drive, monitor, etc.) are disabled to
conserve power. Some implementations provide a small amount of power to the volatile memory in
order to retain its contents, while others save the necessary contents of memory to disk and restore
the memory when the system is needed again.

Many of the current power management systems use a combination of hardware and software
to support the different sleep modes [8]. The operating system can communicate with the BIOS to
place the system in a sleep mode or the BIOS can initiate a sleep mode on its own. Unfortunately,
many servers are designed to never turn off and therefore may not have a power management
option.

If the system state and memory are copied to disk using the power management features of the
computer, then this method may be more reliable than the software solutions that we previously
discussed. This is similar to the OpenBoot procedure, except the data is written to a dedicated
partition and therefore will not overwrite swap space. However, it is not clear if the exact contents
of memory that are saved during a hibernation and is unlikely that the entire physical memory is
preserved.

3.6 Limitations of Software Procedures

The volatile memory acquisition procedures that are readily available are software-based and rely
on untrusted resources, namely the operating system kernel. The user space applications that are
used in the acquisition can be run from a trusted device (such as a CD-ROM), but the kernel is
always needed to extract the data from memory. There is no way to avoid using the kernel with a
software solution because it controls the scheduling of access to the processor and controls all data
flow to the storage locations.

A possible solution to the threat of a malicious kernel is to “patch” the needed areas of the
kernel memory with trusted code. Kernel patching is a common method used by attackers to
install malicious code into kernels. The problem with this solution is that a compromised kernel
may intentionally prevent itself from being updated, and the responder will not be able to determine
if the kernel is in a state that can be trusted. Simply stated, using an untrusted kernel with software
acquisition tools decreases the reliability of the evidence.

A second problem with using a software solution is that it will always require process and kernel
memory in order to execute and will therefore overwrite possible evidence. This is analogous to
installing disk imaging software directly onto a suspect hard disk before it is acquired.
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4 A Hardware-Based Imaging Procedure

4.1 Overview

The goal of our work has been to design and implement a procedure that can make an accurate copy
of volatile data and that minimizes the amount of volatile and non-volatile data that is modified
on the target system in the process. As discussed in the previous section, we cannot rely on the
operating system and software applications to provide reliable data. Therefore, we chose to use a
hardware-based solution because it is difficult for the attacker to tamper with, it can access memory
without relying on the operating system, and it will not need to use system memory while it is
running.

Our procedure uses a PCI expansion card that can be installed into a computer before an
incident occurs. When the machine powers up, the acquisition card configures and tests itself, then
disables its PCI controller so that it does not respond to bus queries from the host system. Only
when the device is actually enabled will it become a visible connection to the PCI bus. Due to
the design of PCI, which is software- and operating system-independent, the attacker may see the
device but may not be able to tamper with its actions.

The back of the PCI card has a physical switch and an interface to an external storage medium.
When the switch is enabled, the PCI controller on the card is activated and takes control of the
PCI bus. The card first suspends the CPU (a recommendation which will prevent an attacker
or legitimately executing application from modifying memory contents while the acquisition is in
process) and then uses Direct Memory Access (DMA) to copy the contents of physical memory to an
external non-volatile storage device, such as an IEEE1394 (Firewire) hard disk, Hitachi Microdrive
[9], or memory card. Once the physical memory has been successfully copied to the non-volatile
storage device, the CPU is resumed and the operating system continues to execute.

4.2 System-Level Design

This section provides a system-level description of the hardware components required for our device.
The primary components of the acquisition card are a microprocessor and a PCI controller with
bus master capability and support for DMA. The microprocessor is connected to ROM, SDRAM,
an external momentary switch, an LED, and an external storage interface. The basic diagram is
shown in Figure 2.

The on-board ROM contains the firmware operating code for the acquisition card. ROM is
used because it is neither writeable nor field upgradeable. This prevents an unauthorized user
from changing program code or operation or otherwise tampering with the card via the PCI bus.
SDRAM is used to store variables, program stack, and other operating data. It is also used for the
buffering and temporary storage of the volatile memory retrieved from the target PC. The LED
provides device operation and status information to the user. For example, it could be used to
identify the following states: Power On Self Test, Idle/Ready-to-Image, Imaging in Process, Error
(of various types), Process Successful. The external switch is used to begin the imaging process
and must be physically activated by a human. Although this original design assumes the server is
in a physically secure operations center, future designs may assume a less secure environment. The
external switch could be replaced by a secure user authentication device, such as a cryptographic
smartcard, USB token, or one-time-password technology. Optional components include a real-time
clock, used for accurate time-stamping to correlate actual time with host-assumed time, and secure
Serial EEPROM memory, used to store user-configurable options (if applicable) and audit trail
information.

In today’s typical computer system, the PCI (Peripheral Component Interconnect) serves as a
primary interface between the external adapter cards and internal system resources [16]. The North
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Figure 2: Block diagram of the acquisition card hardware components
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Bridge connects the host processor bus (to which the CPU and physical memory are attached) to
the PCI bus. The North Bridge also allows devices on the PCI bus to access system memory at
speeds approaching the target processor’s full native bus speed. Figure 3 shows a basic layout of
the PCI bus.

DMA is used to provide block transfers of data between the PCI bus and the target’s local
processor memory without requiring resources from the target processor itself. Using DMA allows
a peripheral device, such as our acquisition card, to transfer data directly from memory without it
being handled by the processor. During the acquisition process, our card will take control of the
PCI bus and request a DMA transfer of system memory by specifying the desired base address and
size of the block. The combination of PCI bus capabilities and DMA transfers are crucial to the
effectiveness and reliability of our proposed acquisition card.

4.3 Imaging Procedure

We now provide a more formal description of our acquisition procedure. This includes the error
handling procedures, but does not include implementation details, such as the hardware-specific
steps.

1. The acquisition card is powered on and completes its hardware initialization routines.

(a) The acquisition card conducts a Power-On Self Test (POST) and halts if a failure occurs.

(b) The acquisition card does not enable its PCI controller.

(c) The acquisition card remains idle until the external switch is activated.
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Figure 3: Layout of the target PCI bus showing card and memory connections
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2. When the external switch is activated, the acquisition process begins.

(a) The acquisition card activates the external storage device and initializes it to store the
upcoming memory image.

(b) The acquisition card enables its PCI controller.

(c) If possible, the acquisition card halts the target processor.

(d) A log entry is created on the external storage device which states that an acquisition
has started and includes the date and time, if available.

(e) The acquisition card saves volatile system memory to the external non-volatile storage
device by looping on the following steps, starting at physical memory address 0, until
all memory has been read:

i. If memory in the next X bytes of memory are known to be protected and not acces-
sible, then read the unprotected areas using the following steps, write ‘00’h to the
memory image corresponding to the protected areas, and create a log entry on the
external storage device with the protected memory locations.

ii. Perform a DMA Memory Read request for the next X bytes of memory to be written
to a buffer in the acquisition card’s SDRAM.

iii. If an I/O error occurs, then a log entry is created on the external storage device and
X bytes of ‘00’h are written to the memory image on the external storage device.

iv. If no I/O error occurs, then the acquisition card writes the buffer in SDRAM to the
memory image on the external storage device.

v. If a hash value of the data is being calculated, then the X bytes of data are added
to the hash calculation.

(f) If a hash value of the data is being calculated, then the final hash value is added to the
log or a separate file.

(g) A log entry is created on the external storage device which states that the acquisition
has ended and includes the date and time, if available.

9



(h) The acquisition card disables the PCI controller and deactivates the external storage
device to end the acquisition process.

3. The acquisition card returns to an idle state.

The X bytes of memory that are read in the above loop will be dependent on the amount of
memory on the acquisition card. We will need to conduct performance tests to identify a reasonable
value for this. The external storage device should have a file system on it, such as FAT, so that
multiple images may exist on the same storage device. Note that FAT32 file systems have a 2GB
file size limit and may not be able to save the entire memory of large servers. Ideally, the memory
image will be saved to a unique session directory with other files that provide optional system
information.

5 Tribble: The Proof-of-Concept Device

To verify our procedure, we designed and built a proof-of-concept device called “Tribble,” which is
functional in our laboratory environment. Tribble is based on an Intel IQ80303 processor [11] which
contains a 100MHz Intel 80960JT (i960) core, a glueless interface to ROM and SDRAM, an I2C bus
interface, and a number of general purpose I/O pins. Most importantly, the IQ80303 processor (also
referred to as the IOP303) contains a PCI-to-PCI bridge module, supporting primary and secondary
PCI buses with up to a 528MBytes/second transfer rate for a 64-bit/66MHz PCI operation, and a
DMA Controller, which handles the underlying timing and protocol specific functionality of DMA.

Using the Intel IQ80303K evaluation platform by Cyclone Microsystems provided us with a
baseline design that only required minimal hardware modifications to fit our desired specifications.
Tribble also contains 2MB of Flash ROM (programmed with the MON960 Target Monitor), 512MB
of on-board SDRAM, RS232 UART (used as a “debug console”), two 7-segment LED displays, a
Li-Ion backup battery (unused in our current design), and a momentary SPST pushbutton switch
connected to the NMI (Non-Maskable Interrupt) of the IQ80303. A paper will be written in the
future on the hardware implementation details.

Our development platform consists of a Dell Inspiron 8200 laptop running Windows 2000 with
a 1.8MHz Intel Pentium 4M processor and 512MB of RAM. The Spectrum Digital SPI610 JTAG
interface connects between the serial port of our development platform and the JTAG port of the
Tribble device. Our software toolchain consists solely of the Intel i960 CTOOLS/MON960 package
[10] which includes a C/C++ compiler, assembler, linker, runtime libraries, debugger, and target
monitor. The gdb960 debugger included in
CTOOLS allows for source-level debugging and the viewing and manipulation of memory and
registers on the Tribble hardware (which was used extensively during operational testing and for
the verification of successful volatile memory imaging).

Our target system is a Gateway desktop PC running Windows 2000 with a 1GHz Intel Pentium
III processor and 256MB of RAM. The Tribble card is plugged into the PCI bus. Figure 4 shows
a block diagram of our development environment.

The goal of this proof-of-concept device was to prove that system memory could be read via the
PCI interface without modifying its contents. Due to the target monitor executing on the Tribble
hardware, the PCI controller was enabled upon power up, so the hardware was visible to the system
even when it was not acquiring memory. The external switch was not implemented in this design,
so the acquisition process occurred programmatically when we downloaded code onto the Tribble
hardware. Additionally, the external storage device interface was not implemented. The contents
of retrieved volatile memory were viewed with gdb960 and displayed to our serial debug console in
both ASCII and hexadecimal formats, as shown in Figure 5.
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Figure 4: Block diagram of the Tribble development environment
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Figure 5: Partial memory dump displayed on the serial debug console, starting address 0x62EBBA0

04000000020000000E00C10000231000540052004900420042004C0045002000 [.............#..T.R.I.B.B.L.E. .]

570041005300200048004500520045002C00200044004500430045004D004200 [W.A.S. .H.E.R.E.,. .D.E.C.E.M.B.]

450052002000310032002C002000320030003000330000000000000000000000 [E.R. .1.2.,. .2.0.0.3...........]

000000000000000000000000000000000000000004006A007D020E0000103700 [......................j.}.....7.]

78010700780107003C003D003E003F0040004100420043004400450046004700 [x...x...<.=.>.?.@.A.B.C.D.E.F.G.]

480049004A004B004C004D004E004F0050005100520053005400550056005700 [H.I.J.K.L.M.N.O.P.Q.R.S.T.U.V.W.]

580059005A005B005C005D005E005F0060006100620063006400650066006700 [X.Y.Z.[.\.].^._.‘.a.b.c.d.e.f.g.]

680069006A006B006C006D006E006F0070007100720073007400750076007700 [h.i.j.k.l.m.n.o.p.q.r.s.t.u.v.w.]

780079007A007B007C007D007E007F00AC2081001A2092011E20262020202120 [x.y.z.{.|.}.~.... ... ... & ! ]

C60230206001392052018D007D018F009000182019201C201D20222013201420 [..0 ‘.9 R...}...... . . . " . . ]

5.1 Test Procedures and Results

To test that Tribble was reading actual volatile memory using the PCI bus and DMA Read Memory
requests, we configured it to read a 4096-byte page of memory and then read the same page of
memory using dd with the
\\.\PhysicalMemory object. This was repeated with many pages and all were found to be equal,
although many of the pages were just large arrays of ‘00’h. We read data in 4096-byte blocks
because that is the default size of virtual memory pages for Intel-based platforms.

To verify that both dd and Tribble were reading the correct memory locations, we used the
SoftICE tool [4] to write two known 4-byte hexadecimal strings to two disparate physical memory
locations. Both dd and Tribble read the page containing the memory locations that were modified
by SoftICE and it was verified that the strings were there.

To test that the acquisition process was not modifying any memory that it read, a memory
location with a known data value was read twice in a row. In all cases, the result of the second
read was the same as the first. This test does not prove that other memory locations were not
written to by Tribble during the process, but a more thorough test could not be performed until
the memory contents are saved to a non-volatile external storage device.

A final test was to acquire all of the target system memory using the dd tool and then acquire
all of the memory using Tribble. The output was then compared in 4096-byte pages. As previously
mentioned, virtual memory uses pages that are 4096 bytes in size and therefore it would be expected
that some pages would differ between the two acquisitions, since new pages may have been written
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between the time of the acquisitions. Comparing parts of the two outputs by hand showed that
many of the pages were the same, some of them had moved locations between the two executions,
and some of the pages were new. Tribble ran very slowly due to the fact that the 256MB of
memory was being written in ASCII and hexadecimal formats to a serial terminal at 115.2kbps, so
many processes were able to run between the dd acquisition and the end of the Tribble acquisition.
Therefore, these results were not surprising and more extensive tests will be performed when the
external storage device interface is implemented.

Before the full memory acquisition was performed, the Notepad application was opened on the
target machine and the string “TRIBBLE WAS HERE, DECEMBER 12, 2003” was entered into
the window. This string was identified in Unicode format in both the Tribble and dd outputs. This
string was previously shown in Figure 5.

During our full memory acquisition tests using Tribble, the target operating system would freeze
when we attempted to read within memory location 0xB6000. This memory location is inside of
the Upper Memory Area (UMA) of Intel-based PCs which is reserved for video RAM and system
BIOS. The UMA ranges from 0xA0000 to 0xFFFFF (640kB to 1MB). For our tests, we skipped
the memory region from 0xA0000 to 0xC0000 so that we would not freeze the target system. We
will examine this memory area carefully in the future to identify any methods of reading it without
causing ill effects on the target system. It may be necessary to skip the entire UMA region if other
test systems freeze at different memory locations within the area.

6 Limitations

This section will address the limitations of this procedure. The first limitation of using the
hardware-based acquisition device is that it needs to be installed prior to an incident. The de-
vice has not been designed for an incident response team member to carry in his toolkit to install
after the fact, and rather needs to be considered as part of a forensic readiness plan.

The thought of installing a PCI card into multiple systems before an incident occurs may sound
expensive and impractical. However, the intent of the card is not to be installed into every computer
system in a particular environment. This device is most useful when installed into at-risk, critical
servers where an attack is likely and a high-stake intrusion investigation might occur. From a cost
perspective, the retail price of the hardware, though not fully explored at this point, will be equal to
or less than other typical server components, making it both affordable and practical. Additionally,
a trusted hardware-based device is needed to reliably aquire the system memory contents without
compromising the integrity of data stored on the memory. Some servers have hot-swappable PCI
card slots, so a responder could possibly install the card after an incident, but that will require
access to the inside of the computer and may require use of the operating system in order to enable
the device. This scenario and the use of other non-invasive interfaces (such as PCMCIA/CardBus)
will be investigated in the future after the completion of our current design.

When the acquisition card enables its PCI controller, the operating system may detect that the
card is now present on the bus. Systems with Plug-and-Play support, such as Microsoft Windows,
may show a message that tells the user that a new device has been detected and may request a
driver. To prevent this message, a simple “dummy” device driver could be installed on the system
that is loaded when the card is enabled but does not actually interact with the physical card. The
existence of this driver may alert the attacker that the card is installed, but due to the inherent
operating system- and software-independence of PCI, we believe that he will not be able to disable
or modify the behavior of the acquisition card. If it is determined through our future research
that a device driver is indeed necessary, there are three possible scenarios if an attacker detects the
presence of the driver. The attacker will either stop his attack altogether, continue with his attack
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not concerned about the card, or attempt to attack the card itself. Future work will be done to
verify that attacks against the card, such as through the creation of a malicious device driver, can
be reduced or prevented.

The output of this process is a dump of physical memory. We will be able to do basic analysis of
it using strings, grep, and hex editors, but there are currently no automated or integrated tools
for analysis. To view the memory that a specific process used, the page table must be located and
the pages in physical memory and swap space need to be mapped to the process’s virtual memory
addresses. This is also future work.

This type of device is difficult for an end user to test and validate. The memory is constantly
changing and therefore it will be difficult to verify that the image is an exact copy and that data
was not written to target memory during the acquisition. One potential test is to install the card
in a computer with no operating system. The memory would be acquired twice in a row and
the resulting images compared. When our implementation is complete, testing methods will be
examined in more detail.

7 Conclusion

In this paper, we have given requirements for the general process of volatile memory acquisition, a
procedure that can satisfy our requirements, and the initial results from our hardware implemen-
tation of the procedure. Our hardware-based procedure can provide more reliable evidence than
a software-based solution because there is a smaller risk of an attacker modifying the procedure
to produce false data. This method will also not write data to the target memory or hard drive
during the acquisition.

A device that implements this procedure can be installed by a company on its servers so that
the entire state of the server can be preserved for the search of digital evidence. This device can
also be used by companies that do not have a dedicated incident response team. For example, a
company detects that one of its systems has been compromised and a third party response team
is called. However, it will take them at least an hour to arrive on site. During that time, the
processes that the attacker has executed could cause damage to the system, but if the company
unplugs the computer then the volatile memory is lost. Using the hardware-based implementation,
the company can simply press a button to save the memory contents and then unplug the server
until the response team arrives to acquire the disk and begin the investigation.

Our future work includes completing our hardware implementation of the procedure, conducting
performance tests, verifying that system memory is not written to during the acquisition process,
testing if the target system can be halted without ill effects, and investigating potential attacks
against the device. A paper will be written in the future on the hardware implementation details.
A patent for this device and procedure is pending.
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